I have no idea what you're talking about...

...so here's a bunny with a pancake on its head.
Pragmatic Brewing

The Cheap’n’Easy Way
PRAGMATIC

Dealing with things sensibly and realistically in a way that is based on practical rather than theoretical considerations.
Dangit! My barley and hops got all wet and fermented! Maybe I should taste it?

Really, Really, Really Great Moments in History
Pragmatic
Make the best beer possible
While having the most fun possible
While doing the least work possible
Corollary
Do whatever it takes to make better beer

BUT
Make sure the effort you take yields results that are worth the effort!
Corollary to the Corollary

Unless it’s fun and you just want to do it anyway
Where You Can Be Pragmatic in Your Brewing

- Equipment
- Recipe
- Technique
Equipment Choices

Choose your equipment based on the space you have available, your budget, and the time you have available for brewing.
Stovetop Brewing - Mashing
Sparging on the Stovetop
Brew In A Bag
Mashing in a cooler

Caveat: Make sure the braid is really stainless steel!

For details on construction or method, go to www.dennybrew.com
Big Fancy Schmancy system
Look for Alternatives

• No refractometer? - Put a gravity sample in an old metal cocktail shaker. Put the shaker in a bowl of ice water and swirl it around. In a minute or so, it will be cool enough for a hydrometer reading.

• No pump? Look at venturi based “pumps”. They can’t do everything, but they may do what you need at a fraction of the price.
• Aeration alternatives....
Mixstir or paint mixer

Venturi tube
Recipes

• Choose a recipe that fits your skill level

• Choose a recipe that teaches you new skills

• Brew the same recipe over and over until you can duplicate it every time

• Change only ONE THING at a time to assess changes
Techniques

• Choose techniques that give you desired results while letting you enjoy brewing

• Don’t think that more effort always translates into better results

• Taste the beers critically and in an unbiased way to assess techniques
Fly Sparging

The usual way most brewers sparge is continuous (also called on the fly, or fly) sparging. After vorlauf, the wort runoff is begun and water is added to the mash tun at the same rate as the runoff. It’s important to go slow so as to extract the maximum amount of sugar and not compact the grainbed. Theoretically, this form of sparging can give you the highest extraction of sugars.
No Sparge

John Palmer says in his BYO article “Skip the Sparge” (May-June 2003), a no sparge brew has the entire volume of “sparge” water added to the mash and stirred in before any runoff has taken place. Even though additional water has been added, since it’s been added to the mash before runoff has begun, we can more properly think of it as a mash infusion, rather than a sparge addition...hence the name “no-sparge”. This method is the easiest way to mash, but at the expense of poor extraction, typically 50%. The advantage, though, is that because all the sugar from the mash is in solution from the agitation of adding the water, lauter design has minimal effect.
Batch Sparge

After conversion, the sweet wort is recirculated as normal and the mashtun is completely drained as quickly as possible (NOTE: quick draining is a benefit, not a requirement, of batch sparging. I recommend you start the recirculation with the valve just cracked open, to set the grain bed correctly. After you return the vorlaufed portion to the mash tun, you can open the valve whatever amount works for your system), and an addition of sparge water is added. This is stirred into the mash, and after recirculation is once more drained as quickly as the system will allow. Sometimes, multiple batches are added if necessary or an additional infusion is made before the first runoff is begun.
Advantages of Batch Sparging

No (or reduced) worries about pH because you’re not continually diluting the buffering power of the grains

Inefficient lautering systems don’t really affect the extraction rate since the sugars from the grain are in solution

A mashout is seldom necessary (though may still be desirable) since the wort will be in the kettle more quickly and enzymes denatured by boiling

Extraction rates range from slightly less to slightly more than fly sparging. The more inefficient your lautering system is for fly sparging, the bigger the gain in extraction you’ll see from batch sparging.
Formulae and definition of variables

• $R_1 =$ initial runoff volume
 (mash water volume - water absorbed by grain)

• $S =$ batch sparge water volume

• $V =$ total boil volume

• $I =$ volume of infusions for a step mash

• $R_1 + I + S(1) + S(2) + S(\text{etc.})$ must equal V

AND

$R_1 + I = 0.5V$
Example

• Assume 10 lb. grain, absorption .1 gal./lb., 7 gal. pre boil volume

• 1.25 qt./lb. = 3.125 gal. strike water

• 2.125 gal. predicted runoff, so add 1.375 gal. (5.5 qt.) before mash runoff for a total of 3.5 gal. mash runoff

• Use 3.5 gal. sparge water for equal runoff volumes
The Pragmatic Method

After the mash runoff, measure the amount of wort in your kettle.

Sparge with enough water to hit your boil volume.

Example:
Boil Volume = 7 gal.
Mash Runoff Volume = 3 gal.
Sparge Water Volume = 4 gal.
Building the Mashtun

• A cooler
• Toilet supply line
• Minikeg bung
• Valve
• Hose clamps
• 1/2 inch ODx3/8 inch ID food grade vinyl tubing
Step by Step

1.) Remove the spigot from the cooler. Usually, there’s a nut on the inside of the cooler holding the spigot on. Unscrew that and the spigot should pop right out.

2.) Remove the plastic insert from the hole in the minikeg bung, and insert the bung into the spigot hole, from the inside of the cooler. The beveled edge of the bung goes in first, and the flange of the bung should end up flush with the cooler wall.

3.) Cut off a 6 inch piece of the vinyl tubing and, from the inside of the cooler, insert it into the hole in the minikeg bung. Let a couple inches of tubing protrude from each side of the cooler.

4.) Cut the threaded fittings off the water supply line (I use a hatchet). Pull the tubing out from the braid, leaving you with a hollow length of hose braid. Flatten the last inch or so of one end of the braid. Fold it over on itself 3 times to seal the end. Squeeze the fold with a pair of pliers to crimp it closed.

5.) Slip a hose clamp over the end of the braid, and slip the braid over the end of the vinyl tubing INSIDE the cooler. Tighten the clamp until snug, but don’t squeeze the tubing shut! photos 2nd row #2 and #3

6.) Insert one end of the valve into the tubing on the outside of the cooler and secure it with a hose clamp. Slip another hose clamp over the end of the long piece of tubing, connect the tubing to the output side of the valve, and secure with the hose clamp.
After the mash is complete, I vorlauf (recirculate) by running off into the pitcher until the sweet wort runs clear. Using the hose braid, it never takes more than 2 qts. to clear and 1 qt. is more usual. I then direct the runoff into the kettle, and gently pour what's in the pitcher back over the top of the mash.
As the first runoff progresses, I heat batch sparge water in the 7.5 gal. kettle. After the first runoff, I add the sparge water like I do the mash water, using the pitcher until the kettle is light enough to lift. I use 185-190°F sparge water, which gives me a grain bed temp. of 165-168°F. I stir the water in well to make sure all the sugar is in solution, then I vorlauf as I did for the first runoff and start the boil.
Resources

• Denny Conn
 www.dennybrew.com

• Ken Schwartz, “A Formulation Procedure for No-Sparge and Batch-Sparge Recipes”
 http://home.roadrunner.com/~brewbeer/files/nbsparge.htm
Changing and Assessing Your Beer

• Change only one thing at a time
• Split the wort to assess hops or yeasts
• Do back to back batches to assess recipe or technique differences
• Use blind triangle tasting to assess beers
• Don’t give away information to the tasters
DON’T FOOL YOURSELF!
The study indicates that the suggestion of a beer’s history may well play a psychological role in the perception of the beer.

Merely suggesting a difference between histories causes some judges to perceive beers as different.

..as panel members are more highly trained, they appear to be less likely to declare a preference, effectively superseding the information they have been given.
Beer Time Study

<table>
<thead>
<tr>
<th>Degree of Training</th>
<th>Rigorously Trained</th>
<th>Trained</th>
<th>Untrained</th>
</tr>
</thead>
<tbody>
<tr>
<td>Country</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belgium</td>
<td>7</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Finland</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ireland</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td># traditional</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td># non traditional</td>
<td>1</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>no preference</td>
<td>6</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>
Adjunct Study

<table>
<thead>
<tr>
<th>Degree of Training</th>
<th>Rigorously Trained</th>
<th>Trained</th>
<th>Untrained</th>
</tr>
</thead>
<tbody>
<tr>
<td>Country</td>
<td>Belgium</td>
<td>Finland</td>
<td>Ireland</td>
</tr>
<tr>
<td># traditional</td>
<td>6</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td># non traditional</td>
<td>4</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>no preference</td>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
We were then given a batch of three unidentified black beers, and told to write notes on them, then attempt to guess the beer styles. After tasting the three we were asked one by one to read our notes on the first one, all of which went along the lines of "roasty, caramel, maybe a bit neutral". The shock was considerable when we were told that it was, again, Ringnes Pils, this time with some black colouring added to it. Every single one of the 10 participants claimed to taste roastiness in the beer, and not one of the 10 so much as came near the idea that this might be a pilsener. An interesting example of the sense of taste being affected by visual signals.

The third beer was again described as having a pretty lasting brown head, being roasty, kind of neutral, maybe a bit sweet, and, by one person, as slightly estery. There was again considerable shock on being told that this was Erdinger Hefe-Weissbier (the pale variety) with dark colouring. We'd again been fooled by the colour into picking up an entirely imaginary roastiness, although the ester character is certainly correct.
I'm still surprised by this result. There was considerable beer tasting experience among the participants. There were three RateBeer users with approximately 8,000 ratings put together, one guy educated as a wine sommelier, two commercial microbrewers, and the rest were certainly not novices, either. And yet while the participants were able to recognize two beers simply by tasting them, they were also fooled into tasting something that was just not there. There is much research and anecdotal evidence indicating that people's sense of taste and aroma are strongly influenced by their expectations, so this shouldn't have come as a shock. But it did.
A study has found that people who pay more for a product do enjoy it more. The researchers discovered that people given two identical red wines to drink said they got much more pleasure from the one they were told had cost more. Brain scans confirmed that their pleasure centres were activated far more by the higher-priced wine. The findings could help to explain why rich diners are often willing to pay thousands of pounds for a bottle of fine wine. It seems much of the real pleasure is generated by the high price paid rather than by the quality of the vintage.
The researchers observed changes in a part of the brain known as the medial orbito-frontal cortex, which plays a central role in many types of pleasure. They found that the cortex became more activated by the “expensive” wines than by the cheaper ones. This, said Rangel, showed that the increase in pleasure was real, even though the products were identical.
Decoction Experiment

Brewers were asked to brew 2 batches of beer (any style) using identical recipes. One batch was to be decocted, using any decoction schedule they preferred. The other batch was to be brewed using either a single infusion or step mash (either infusions or direct fired), again the brewer’s preference. The reasons for doing this were to find what type of decoction or infusion schedule a typical homebrewer would use for their beer. Then each brewer was asked to assemble a tasting panel and have them answer a set of questions. Beers brewed were a basic pale ale (single infusion, double decoction with 60 and 30 min. boils), an alt (3 step infusion, single decoction with 30 min. boil), a Dortmunder Export (single infusion, single decoction with 45 min. boil), a German pils (single infusion, single decoction with 30 min. boil), and a Munich dunkel (single infusion, single decoction with 30 min. boil).
Decoction is reputed to have several effects on beer so we are asking you to judge some samples side-by-side to see if you can tell a difference. Both beers are made using the exact same ingredients, yeast, and fermentation times but only one is decocted.

You should now have two beer samples in front of you. Evaluate the beers by sight, smell, taste and texture. Describe each sensation in as much detail as you can on page 2.

Circle your choices on the questions below

1.) Which beer seemed to you to be "maltier"?
 A B No preference

2.) Which beer seemed to you to have more body?
 A B No preference

3.) Which beer seemed to you to be sweeter?
 A B No preference

4.) Which beer seemed to you to have better head retention and formation?
 A B No preference

5.) Which beer seemed to you to better fit the BJCP guidelines for the style?
 A B No preference

6.) Which beer do you think was decocted?
 A B No preference

7.) Which beer do you prefer, regardless of your other choices?
 A B No preference
Decoction Conclusions

The purpose of the experiment was to find if tasters preferred the flavor of decocted beers. Despite other purported benefits of decoction mashing, the overall goal is to make a beer that drinkers prefer. Looking at the results, decocted beers were slightly preferred over infused beers. But combining the results for infused beers with the “no preference” results gives the combination a slight preference. This says to me that a single decoction with a 30 min. boil does not make a clearly preferred beer, and that the difference in preference for this decoction method is so close to the preference for infused beers that the decoction may not be worth the effort for the results it provides. I urge homebrewers to do their own experiment to decide if decoction is worth it, but make sure to do it objectively and not let their own prejudices or expectations influence the experiment.
The purpose of this experiment was to determine the effects of First Wort Hopping (FWH) on a beer’s flavor. Purported effects are increased hop flavor and a “smoother” quality of bitterness. A 10 gal batch of wort was produced and split into 2 5 gal. batches. One batch received an ounce of Cascade hops at 60 min. as the only addition, the other received an ounce of Cascade as FWH as the only addition. Boil times, yeast pitching rates, and fermentation characteristics were controlled as tightly as possible to produce 2 batches with the only difference being the hop schedule. The beers were tasted by 2 panels, one in California and the other in Eugene, OR, by experienced homebrewers, BJCP judges, and commercial brewers in a blind triangle tasting. In the first part of the tasting, panelists were told nothing about the 3 beers they were presented and asked to answer questions about them. In the second part, tasters were told that there were only 2 different beers and again asked to fill out questionnaires about the beers.
PART 1

1) These three samples are:
 - The same
 - One is different from the other two
 - All three are different from each other.

2) If 2 or more beers are the same, list which they are.

3) If you detected a difference, describe what was detected for each sample:
 A: drier finish, softer/less bitter, more pronounced bitter, slightly more bitter than C, more hop aroma & flavor
 B: more hop aroma, drier, sharper finish, less edgy than A,
 C: more malt flavor, not as sharp, less bitter

4) Did you prefer one of the samples? A B C no preference

5) If you had a preference, what was it about the sample that you preferred?
PART 2
At this point, identify the 2 different samples and re-label them as 1 and 2

1) Thinking of bitterness, did one sample seem more bitter?
 1 2 no preference

2) Subjectively describe your impression of the bitterness of each sample
 1:
 2:

3) Thinking of hop flavor, did one sample seem to have more hop flavor?
 1 2 no preference

4) Subjectively describe your impression of the hop flavor of each sample
 1:
 2:
IBU Analysis Results

- Gas Chromatography by Scott Bruslind at Analysis Laboratory

<table>
<thead>
<tr>
<th>Beer</th>
<th>IBU</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (FWH)</td>
<td>31</td>
</tr>
<tr>
<td>B (60)</td>
<td>28.7</td>
</tr>
</tbody>
</table>
IBU Analysis Results

• Here are the HPLC (High Pressure Liquid Chromatography) results of the brews: The alpha-acids are not bitter though they contribute to bitterness units value. The humulinones are oxidized alpha-acids and are slightly bitter.

• **Beer** | Iso-alpha-acids | Alpha-acids | Humulinones
• A (FWH) | 24.8 | 3.5 | 1.9
• B (60) | 21.8 | 4.7 | 1.8

• Thanks to Bob Smith at S.S. Steiner
<table>
<thead>
<tr>
<th>Difference A</th>
<th>Difference B</th>
<th>Difference C</th>
<th>Pref. reason</th>
<th>Bitter desc. 1</th>
<th>Bitter desc. 2</th>
<th>Flavor desc. 1</th>
<th>Flavor desc. 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>drier finish</td>
<td>more hop aroma</td>
<td>more malt flavor</td>
<td>better aroma</td>
<td>more early</td>
<td>more late</td>
<td>balance, cleaner</td>
<td>less flavor</td>
</tr>
<tr>
<td>softer, less bitter</td>
<td>drier, sharper finish</td>
<td>smoke aroma</td>
<td>lighter smoke</td>
<td>more sweetness & body</td>
<td>smoother</td>
<td>almost none</td>
<td>none</td>
</tr>
<tr>
<td>more pronounced bitter</td>
<td>less edgy than A</td>
<td>not as sharp</td>
<td>pronounced bitter, not as soft bitter</td>
<td>slightly bitter</td>
<td>mellow</td>
<td>hop lingers</td>
<td>fuller hop</td>
</tr>
<tr>
<td>slightly more bitter than C</td>
<td>less than A & C</td>
<td>A & C sour bitterness</td>
<td>more edge to bitterness</td>
<td>not as pronounced</td>
<td>shaper</td>
<td>more bitter, hoppier</td>
<td>smoother</td>
</tr>
<tr>
<td>less bitter</td>
<td>less bitter</td>
<td>lingering aftertaste bitter</td>
<td>light finish</td>
<td>pleasant, nice balance</td>
<td>more malt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>more hop aroma, flavor</td>
<td>malty, grainy</td>
<td>less hoppy</td>
<td>balanced</td>
<td>lingering bitter</td>
<td>light, just right</td>
<td></td>
<td></td>
</tr>
<tr>
<td>more hop aroma</td>
<td>flavorful</td>
<td>balanced</td>
<td>lingering bitter</td>
<td>pleasant, nice balance</td>
<td>more malt</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FWH Conclusions

As you can see from the comments from tasters, there was no clear conclusion to be drawn. Although the FWH beer was measured to have approximately 10% more IBUs than the 60 min. beer, taster’s comments often found the FWH beer to have less bitter character and a “smoother” bitterness. But these conclusions were by no means unanimous. Again, I encourage homebrewers to repeat this experiment for themselves, especially the blind triangle tasting. When I tasted the beers before the blind tasting, I could clearly discern the differences I’d expected to be there. When I did the blind tasting, it took me 3 tries to pick out the different beer and even then I misidentified which one it was. Only 7 out of 18 tasters correctly identified the different beer, which says to me there may be little difference made by FWH. On the other hand, I still use the technique because it’s easy to do and I think it might make a difference.
Pragmatic Brewing
The Cheap'n'EASY Way